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Nonuniform reaction rate distribution for the generalized Fisher equation:
Ignition ahead of the reaction front

Sergei Fedotov*
Department of Mathematics, UMIST, Manchester M60 1QD, United Kingdom

~Received 18 May 1999!

We have addressed the problem of wavefront propagation for the generalized Fisher equation involving
diffusion transport with a finite velocity and a spatially nonuniform reaction rate. We have considered in detail
the phenomenon of wavefront jump or ignition ahead of the reaction front for a piecewise constant reaction
rate. By using a relativistic mechanics technique based on the principle of least action we have found the
criterion under which the ignition phenomenon happens and the time of appearance of the new front ahead of
the initial reaction front.@S1063-651X~99!16810-7#

PACS number~s!: 82.20.Db, 05.70.Ln, 05.60.2k
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I. INTRODUCTION

The solution of the classical Fisher equation with frontli
initial condition converges to a traveling wave solution in t
long-time limit @1–4#. It is well known that the rateu at
which the wave propagates can be determined exa
namely,u5A4DU, whereD is the diffusion coefficient and
U is the reaction rate coefficient. The basic disadvantag
this formula is that it gives us an infinite speed of wa
propagation when the chemical rate becomes very f
Clearly this contradicts the simple physical fact that t
speedu should not exceed the propagation rate of the r
transport process. This contradiction requires the modifi
tion of the transport process based on the diffusion appr
mation by using some sort of hyperbolic terms@5–7# and this
has been the focus of several recent studies@8–17#.

It should be noted that there is another way to overco
this problem of the structural stability@18,19# by the intro-
duction of a cutoff on the reaction term in the leading ed
of the front profile@20,21#. A very interesting result has bee
found that if we replace the reaction rate by zero whene
the scalar field is less than a cutoffe the effect on the propa
gation rate is very strong. The shift in propagating velocity
found to be of the formK (ln e)22 for the small values ofe.

The basic problem with the classical Fisher equation
terms of the transport process is that it is described by di
sion approximation and the rate at which the wave pro
gates throughout the reaction-diffusion system can be o
estimated. This may be explained by the physical fact t
the density field predicted by the diffusion approximati
~infinite speed of propagation! has higher tails than the den
sity of real transport process@5,6,22,23#. Recently@12,13#
we introduced a relativistic mechanics technique which
lows us to analyze the reaction front dynamics for the g
eralized Fisher equation involving the diffusion with a fini
velocity in terms of the Hamilton-Jacobi equation for a re
tivistic particle in a potential field. It is the purpose of th
paper to use this technique for analyzing the case w
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the reaction rate coefficient is a function of the space co
dinate. It was Freidlin@3,4# who discovered that for non
uniform spatial distribution of the chemical rate the wa
front for the classical Fisher equation may have a jump. T
basic idea is that if the chemical rate coefficientU is a rap-
idly growing function in the direction of wave propagatio
ignition may take place ahead of the wavefront. The aim
this paper is to find out whether or not this phenomenon s
exists in the case of the generalized Fisher equation inv
ing a diffusion with finite velocity and, if so, to determine th
basic characteristics of it, namely, the circumstances un
which this phenomenon might happen and the ignition ti
or the time of appearance of the ‘‘new source’’ ahead of
wavefront. It is clear from a physical point of view that th
phenomenon ceases to exist in the case of very fast chem
reaction when the reaction front moves with the maxim
possible speed@12,13#.

It should be also noted that we consider here only the c
of front propagation into an unstable state. The basic rea
is that the phenomenon of the reaction front jump cease
exist for a trigger wave, that is, in the case of propagat
into a metastable state@3,4#.

II. STATEMENT OF THE PROBLEM

In this paper we give a detailed description of the ph
nomenon of ignition ahead of the reaction front in the si
plest nontrivial case of piecewise constant reaction rate.
generalized Fisher equation after hyperbolic rescaling in
space dimension may be written as follows@12,13#:

]r«

]t
5

D

t E
0

t

expS 2
t2s

«t D ]2r«

]x2 ~s,x!ds

1
U~x!

«
r«~12r«!, xPR1 ~1!

where D is the diffusion coefficient,U(x) is the spatially
nonuniform reaction rate coefficient,t is the relaxation time,
and« is the small parameter describing the slow variation
reaction rate in space. It is assumed that the scalar fieldr«

varies from 0 to 1.
4958 © 1999 The American Physical Society
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In fact we can also consider the general reaction rate t
of the Kolmogorov-Petrovskii-Piskunov type@1–4#

U~x!

«
r« f ~r«!,

where the nonlinear functionf (r) has the properties

max
rP@0,1#

f ~r!5 f ~0!51, f ~0!50.

However, since the major feature of the front propagat
into an unstable state is that the dynamics of reaction fron
determined by the processes taking place in the leading e
of the front profile@1–4,24#, the main results can be obtaine
by using the simplified kinetics

U~x!

«
r«~12r«!

without any restriction of a degree of generality.
For the sake of simplicity we consider the initial distrib

tion of the scalar field in the form of a step function

r~0,x!5H~x!, ~2!

whereH(x) is a Heaviside functionH(x)51 for x<0 and
H(x)50 for x.0. For an arbitrary initial condition we hav
so-called problem of velocity selection@1–4#. Let us discuss
this in more details. The choice of the initial condition
terms of the front-like function~2! ensures the selection o
the minimum propagation speed. If, for example, the init
distribution has the exponential form

r~0,x!5H 1, if x<0

exp~2ax!, if x.0,

then for the classical Fisher equation the propagation rau
can be written as@3,4#

u5H A2DS U

a
1

a

2 D , if a,A2U

A4DU, if a>A2U.

It follows from here that the propagation rate can vary fro
the minimum propagation speedA4DU to infinity when a
→0. That is why in this paper we choose the initial conditi
in the form of step function~2! to concentrate on the phe
nomenon of reaction front jump.

We assume that the reaction rateU(x) is piecewise con-
stant such that

U~x!5H U1 , if x,h

U2 , if x>h
U2.U1. ~3!

Our purpose is to analyze the behavior of the solution
the initial value problem~1! and ~2! in the limit «→0. It is
clear from~1! that this limit corresponds to the case when t
reaction rate is very fast~« appears in the denominator! and
m

n
is
ge

l

f

the transport process is very slow. When«→0 the nonlinear
term becomes dominant and therefore the solutionr« can
take only two values 0 and 1 everywhere except the nar
region in space where the diffusion and nonlinear terms
balanced. Those regions can be regarded as the rea
fronts and our aim is to find the location of the reacti
fronts and the rate at which they move.

Sincer«(t,x) is a scalar field varying from 0 to 1, we ca
make an exponential transformation

r«~ t,x!5expS 2
G«~ t,x!

« D , G«~ t,x!>0. ~4!

such that the limiting function

G~ t,x!5 lim
«→0

G«~ t,x! ~5!

varying from 0 to` determines the location of the reactio
fronts S5$xPR1:G(t,x)50% @12,13,25–27#.

It turns out that the functionG(t,x) is the solution of the
relativistic Hamilton-Jacobi equation for a charge partic
(e51) with the massm(x) moving in the potential field
w(x) @12,13#

]G

]t
1Am2~x!c41c2S ]G

]x D 2

1w~x!50, @G~ t,x!.0#,

~6!

where the speed of lightc, the massm(x) depending on the
space coordinatex and potential fieldw(x) can be deter-
mined through the phenomenological parametersD, t, and
U(x) as follows:

c25
D

t
, w~x!5

1

2 S U~x!2
1

t D , m~x!5
t

2D S U~x!1
1

t D .

~7!

The advantage of an analogy with the relativistic mech
ics is that we can find the solution of~6! as follows@28#

G~ t,x!5minH E
0

t

Lds: x~0!5x, x~ t !50J ,

G~ t,x!.0, ~8!

where the LagrangianL has the form@28#

L52m~x!c2A12
1

c2 S dx

dsD
2

2w~x! ~9!

and

w~x!5H 1

2 S U12
1

t D , if x,h

1

2 S U22
1

t D , if x>h

~10!
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m~x!5H t

D S U11
1

t D , if x,h

t

D S U21
1

t D , if x>h

c25
D

t
. ~11!

It should be noted that we can also use in~8! the boundary
conditions likex(t)5x,x(0)50.

III. IGNITION AHEAD OF REACTION FRONT

Generally we expect that the solutiont5t(x) of the equa-
tion G(t,x)50 is not a strictly monotonic function; this lac
of monotonicity can be interpreted as the appearance o
nition points in the finite distance ahead of the moving init
reaction front@3,4#. A negative sign of the derivativedt/dx
corresponds to the front moving from right to left. It is cle
from a physical point of view that in the case of the piec
wise reaction rate constant~3! the ignition might occur at the
point h. Therefore, let us calculate the action functional
x5h. Since for x(0)5h, the chemical rateU2 is greater
thanU1 we may expect that it is preferable for the optim
trajectoryx(s) to spend some timet* at the pointx5h and
then to move tox50. The Euler-Lagrange equation has
very simple formd2x/ds250 so that the optimal trajector
can be written as

x~s!5H h, if 0<s<t*

2
hs

t2t*
1

ht

t2t*
, if t* <s<t,

~12!

where the timet* has to be found. Substituting this expre
sion for x(s) into the integral in~8!, we obtain

G~ t,h!5 1
2 min

t*
V~ t,h,t* !, ~13!

where the auxiliary functionV is

V~ t,h,t* !522U2t* 1S 1

t
2U1D ~ t2t* !

2S 1

t
1U1D S ~ t2t* !22

th2

D D 1/2

. ~14!

By equating]V/]t* to zero, we find the timet* that
minimizesV

t* 5t2
h~112tU22tU1!

A4D~U22U1!~11tU2!
. ~15!

After substituting~15! into ~13! and ~14! we obtain the
expression forG(t,h)

G~ t,h!52U2t1hS ~U22U1!~11tU2!

D D 1/2

. ~16!

From the equationG(t,h)50 we can find the ignition
time
g-
l

-

r

l

T5
h

U2
S ~U22U1!~11tU2!

D D 1/2

. ~17!

This is the time when the ignition takes place at the po
x5h. After the ignition the new wavefront starts to mov
from x5h in the both positive and negative directions.

It is interesting to consider the asymptotic limit of th
ignition time T when the nondimensional parameterU2→`
~infinite chemical reaction rate!. If the relaxation timet50
as for the classical Fisher equation, the ignition timeT→0 as
U2

21/2. WhentÞ0 it follows from ~16! that

lim
U2→`

T5hS t

D D 1/2

5
h

c
.0.

Up to time T the old wavefront moves from the pointx
50 with the rate

u15
A4DU1

11tU1
, tU1<1

such that att5T its positionLT is

LT5u1T5
2hAU1~U22U1!~11tU2!

U2~11tU1!
,h, tU1<1.

The critical value ofU2.U1 at which the phenomenon o
wavefront jump ceases to exist can be found from the eq
ity LT5h, that is,U2

cr52U1 /(12tU1). So the criterion for
ignition ahead of the reaction front can be written as

U2.U2
cr5

2U1

12tU1
. ~18!

Note that this value is larger than the corresponding o
for the classical Fisher equation@3,4# and what is more it
tends to infinity whentU1→1. This result has a very clea
physical meaning: the ignition phenomenon ceases to exi
the casetU151 when the initial reaction front moves wit
the maximal possible speedu5c5AD/t.

IV. SUMMARY

We have analyzed the one-dimensional phenomenon
wavefront jump for the generalized Fisher equation invo
ing diffusion transport with a finite velocity and a spatial
nonuniform reaction rate. In the case of piecewise cons
reaction rate we have found the ignition time when the
pearance of a new front ahead of the initial reaction fro
takes place and the criterion under which this phenome
might happen. We believe that the ignition phenomen
ahead of the reaction front might be of great value in co
bustion science where the Fisher equation can be used
for laminar flame propagation@29# and turbulent combustion
@27,30,31#. It would also be interesting to explore the fro
jump phenomenon in the context of propagating magn
fronts in disc dynamos when the local growth rate of ma
netic field is the function of the space coordinate@32# and a
forest fire model under the nonuniform reaction rate con
tions @16#.
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