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Nonuniform reaction rate distribution for the generalized Fisher equation:
Ignition ahead of the reaction front
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Department of Mathematics, UMIST, Manchester M60 1QD, United Kingdom
(Received 18 May 1999

We have addressed the problem of wavefront propagation for the generalized Fisher equation involving
diffusion transport with a finite velocity and a spatially nonuniform reaction rate. We have considered in detail
the phenomenon of wavefront jump or ignition ahead of the reaction front for a piecewise constant reaction
rate. By using a relativistic mechanics technique based on the principle of least action we have found the
criterion under which the ignition phenomenon happens and the time of appearance of the new front ahead of
the initial reaction front[S1063-651X99)16810-7

PACS numbg(s): 82.20.Db, 05.70.Ln, 05.68k

[. INTRODUCTION the reaction rate coefficient is a function of the space coor-
dinate. It was Freidlin3,4] who discovered that for non-
The solution of the classical Fisher equation with frontlike uniform spatial distribution of the chemical rate the wave
initial condition converges to a traveling wave solution in thefront for the classical Fisher equation may have a jump. The
long-time limit [1—4]. It is well known that the ratair at  basic idea is that if the chemical rate coefficiéhts a rap-
which the wave propagates can be determined exactljdly growing function in the direction of wave propagation,
namely,u= \4DU, whereD is the diffusion coefficient and ignition may take place ahead of the wavefront. The aim of

U is the reaction rate coefficient. The basic disadvantage df!iS Paper is to find out whether or not this phenomenon still
exists in the case of the generalized Fisher equation involv-

this formula is that it gives us an infinite speed of wave; cep . i . .
g P ng a diffusion with finite velocity and, if so, to determine the

propagation when the chemical rate becomes very fast. > . o ) .
. . ) ; asic characteristics of it, namely, the circumstances under
Clearly this contradicts the simple physical fact that the . . Y
hich this phenomenon might happen and the ignition time

speedu should not exceed the prqpagatlon rate of the.r_ea r the time of appearance of the “new source” ahead of the

. > vavefront. It is clear from a physical point of view that this
tion of the transport process based on the diffusion approxXispenomenon ceases to exist in the case of very fast chemical
mation by using some sort of hyperbolic terfbs-7] and this  yeaction when the reaction front moves with the maximal
has been the focus of several recent stufBesl?|. possible speeftl2,13.

It should be noted that there is another way to overcome |t should be also noted that we consider here only the case
this problem of the structural stabilifi8,19 by the intro-  of front propagation into an unstable state. The basic reason
duction of a cutoff on the reaction term in the leading edgeis that the phenomenon of the reaction front jump ceases to
of the front profile[20,21]. A very interesting result has been exist for a trigger wave, that is, in the case of propagation
found that if we replace the reaction rate by zero wheneveinto a metastable staf8,4].
the scalar field is less than a cutefthe effect on the propa-
gation rate is very strong. The shift in propagating velocity is Il. STATEMENT OF THE PROBLEM
found to be of the fornK (In )2 for the small values o&.

The basic problem with the classical Fisher equation in In this paper we give a detailed description of the phe-
terms of the transport process is that it is described by diffunomenon of ignition ahead of the reaction front in the sim-
sion approximation and the rate at which the wave propaplest nqntrivia} case of pigcewise constant'reaction_ rate. The
gates throughout the reaction-diffusion system can be ovef€neralized Fisher equation after hyperbolic rescaling in one
estimated. This may be explained by the physical fact thafPace dimension may be written as follojd,13:
the density field predicted by the diffusion approximation

(infinite speed of propagati¢mas higher tails than the den- dp® D [t t—s\ #%p®

sity of real transport proced$,6,22,23. Recently[12,13 i 7]0 exp< s | oz (8X)ds

we introduced a relativistic mechanics technique which al-

lows us to analyze the reaction front dynamics for the gen- U(x) N

eralized Fisher equation involving the diffusion with a finite +——p"(1=p%), xeR (1)

velocity in terms of the Hamilton-Jacobi equation for a rela-
tivistic particle in a potential field. It is the purpose of this \yhere D is the diffusion coefficientU(x) is the spatially
paper to use this technique for analyzing the case wheRonyniform reaction rate coefficientjs the relaxation time,
ande is the small parameter describing the slow variation of
reaction rate in space. It is assumed that the scalar gield
*Electronic address: sergei.fedotov@umist.ac.uk varies from O to 1.
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In fact we can also consider the general reaction rate terrthe transport process is very slow. When>0 the nonlinear

of the Kolmogorov-Petrovskii-Piskunov typé—4] term becomes dominant and therefore the solupbrcan
take only two values 0 and 1 everywhere except the narrow
U(x) region in space where the diffusion and nonlinear terms are
—p®f(p®), balanced. Those regions can be regarded as the reaction
E . N . . .
fronts and our aim is to find the location of the reaction
where the nonlinear functiof(p) has the properties fronts and the rate at which they move.

Sincep®(t,x) is a scalar field varying from 0 to 1, we can

max f(p)=f(0)=1, f(0)=0. make an exponential transformation

pel(0,1]
G®(t,x
However, since the major feature of the front propagation ps(t,x)zexp< - (t.x) ,  G%(t,x)=0. 4
into an unstable state is that the dynamics of reaction front is
determined by the processes taking place in the leading ed . ;
of the front profile{1-4,24, the main results can be obtained Fch that the limiting function
by using the simplified kinetics )
G(t,x)=lim G*(t,x) (5)
£—0
Ux) | 1o e
s =Y varying from O toe determines the location of the reaction
_ o _ fronts S={x e R:G(t,x) =0} [12,13,25-27.
without any restriction of a degree of generality. It turns out that the functio®(t,x) is the solution of the
~ For the sake of simplicity we consider the initial distribu- relativistic Hamilton-Jacobi equation for a charge particle
tion of the scalar field in the form of a step function (e=1) with the massm(x) moving in the potential field
e(x) [12,13
p(0X)=H(x), 2

whereH(x) is a Heaviside fqnctiorp—l_(x)=1 fqr.xso and §+ \/mz(x)c4+02(§ 2+¢(X):0, -
H(x)=0 for x>0. For an arbitrary initial condition we have  dt X

so-called problem of velocity selecti¢ti—4]. Let us discuss (6)
this in more details. The choice of the initial condition in . .

terms of the front-like functior2) ensures the selection of Where the speed of lighd, the massn(x) depending on the

the minimum propagation speed. If, for example, the initialSPace coordinate and potential ﬁ‘.ald‘P(X) can be deter-
distribution has the exponential form mined through the phenomenological paramefers, and

U(x) as follows:

0x) rl, if x<0 5 . L .
p 1X = - 2 T
— > =— = — R = — —
exp—ax), if x>0, c o o(X) 2(U(x) 7-)’ m(X) 5D (U(X)Jr ik
then for the classical Fisher equation the propagationuate (7)

can be written a$3,4] The advantage of an analogy with the relativistic mechan-

ics is that we can find the solution ) as follows[28]

U
V20| =+ 2|, if a<y2U
u= o 2 t
\/m' it =20 G(t,x)=m|n{ foLds: x(0)=Xx, x(t)=0],
It follows from here that the propagation rate can vary from
the minimum propagation spee@®DU to infinity when « G(t,x)>0, (8)

—0. That is why in this paper we choose the initial condition )
in the form of step functior(2) to concentrate on the phe- Where the Lagrangiah has the forn{28]
nomenon of reaction front jump.

We assume that the reaction r&i¢x) is piecewise con- ) 1 {dx\?
stant such that L=-m(x)c ~2lgs e 9
U,, if x<h and
= >U,;.
U(x) U,, if x=h U,>U,; ©)

1

Our purpose is to analyze the behavior of the solution of P
the initial value problem(1) and(2) in the limit e—0. It is o(X)=
clear from(1) that this limit corresponds to the case when the E( 1) if x=h
reaction rate is very fage appears in the denominajand 2 ’

(Ul_ 3), if x<h
(10



4960 BRIEF REPORTS PRE 60

T 1) h [(Uy,—U;)(1+7U,)\ Y2

— - if x<h -

p|\Y1t ) D T U, D ' 17
m(x)= 1 c’=— (11

r U,+=|, if x=h T This is the time when the ignition takes place at the point

D 7)’ x=h. After the ignition the new wavefront starts to move

from x=h in the both positive and negative directions.

It is interesting to consider the asymptotic limit of the
ignition time T when the nondimensional parametgs— «
(infinite chemical reaction ratelf the relaxation timer=0
. IGNITION AHEAD OF REACTION FRONT as for the classical Fisher equation, the ignition tifre 0 as
U, 2. Whenr+0 it follows from (16) that

It should be noted that we can also usé8pthe boundary
conditions likex(t) =x,x(0)=0.

Generally we expect that the solutibr t(x) of the equa-
tion G(t,x)=0 is not a strictly monotonic function; this lack
of monotonicity can be interpreted as the appearance of ig-
nition points in the finite distance ahead of the moving initial
reaction front3,4]. A negative sign of the derivativét/dx
corresponds to the front moving from right to left. It is clear ~ Up to time T the old wavefront moves from the point
from a physical point of view that in the case of the piece-=0 with the rate
wise reaction rate consta(8) the ignition might occur at the

pe 1/2 h
lim T=h 5 :E>O.

Up—oe

point h. Therefore, let us calculate the action functional for T
x=h. Since forx(0)=h, the chemical ratdJ, is greater 1= 4DU1, rU;<1
thanU; we may expect that it is preferable for the optimal 1+7U,

trajectoryx(s) to spend some timg* at the pointx=h and
then to move tox=0. The Euler-Lagrange equation has a
very simple formd?x/ds’=0 so that the optimal trajectory
can be written as

such that at=T its positionLy is

2hJU(U,—U ) (1+7U,)

—uT= <1.
LT U]_T U2(1+TU1) h, ’TU]_ 1
h, if O<s<t* The critical value olU,>U, at which the phenomenon of
X(s)= hs ht ok e (120  wavefront jump ceases to exist can be found from the equal-
o o T USsst ity Ly=h, that is,US'=2U,/(1—7U,). So the criterion for

ignition ahead of the reaction front can be written as
where the timg* has to be found. Substituting this expres-

sion forx(s) into the integral in(8), we obtain 2U,
U,>US5'= . (18
1_ TU]_
G(t,h)=3 minV(t,h,t*), (13)
* Note that this value is larger than the corresponding one
for the classical Fisher equatid3,4] and what is more it
where the auxiliary functio is tends to infinity whenrU,;— 1. This result has a very clear
physical meaning: the ignition phenomenon ceases to exist in
1 the caserU,;=1 when the initial reaction front moves with
V(t,ht*)=—2U,t* + ;—Ul)(t—t*) the maximal possible speed=c=\D/7.
1 Th?\| 12 IV. SUMMARY
—-|=+U, ((t—t*)Z——) (14
T D We have analyzed the one-dimensional phenomenon of

wavefront jump for the generalized Fisher equation involv-
ing diffusion transport with a finite velocity and a spatially
nonuniform reaction rate. In the case of piecewise constant
reaction rate we have found the ignition time when the ap-
h(1+27U,— 7U;) pearance of a new front ahead of the initial reaction front
- J2D(U,—Up(1+0,) (15  takes place and the criterion under which this phenomenon
2 -1 2 might happen. We believe that the ignition phenomenon
. ; . ahead of the reaction front might be of great value in com-
exszigizﬁt}sggu(t;nﬁ)(ﬁ) into (13) and (14) we obtain the bustion science where the_ Fisher equation can be usgd both
' for laminar flame propagatigr29] and turbulent combustion
[27,30,31]. It would also be interesting to explore the front
(Up=Uy)(1+7U,)\ 12 1g  Jump phenomenon in the context of propagating magnetic
D - (18 fronts in disc dynamos when the local growth rate of mag-
netic field is the function of the space coordinf32] and a
From the equatiorG(t,h)=0 we can find the ignition forest fire model under the nonuniform reaction rate condi-
time tions[16].

By equatingdV/aot* to zero, we find the time* that
minimizesV

*

G(t,h)=—U,t+h
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